
CS87 Project Report:

Ray Marching 3-Dimensional Fractals on GPU Clusters

Jonah Langlieb, Kei Imada, Liam Packer
Computer Science Department, Swarthmore College, Swarthmore, PA 19081

December 16, 2018

Abstract

Fractals are self-similar mathematical structures

which play an important role in chaos theory and

which serve as visually stunning examples of the com-

plexity that can stem from simple mathematical defi-

nitions. They are especially amiable for use with par-

allel computing because they only require the (embar-

rassingly parallel) iteration of a complex function at

each point. However, with the advent of 3D ‘mandel-

bulb’ fractals, new techniques are required to more ef-

ficiently visualize these structures. Ray marching of-

fers one such technique that combines the traditional

approach of 3D ray tracing with mathematically-

informed ‘jumps’ between time steps, allowing for

drastically improved performance. In this paper, we

explore the application of ray marching ‘Mandelbulb’

fractals with modern CUDA GPGPU programming,

extended to run on the commodity GPU cluster avail-

able at Swarthmore College, in order to understand

the trade-offs involved in large-scale CUDA program-

ming. Our program, which uses C++ CUDA to inter-

face with the GPU and MPI for inter-node commu-

cation demonstrates robust scaling across resolution

and number of nodes. Our hypotheses—that addi-

tional GPUs would improve run-time only when the

image size was larger than a single GPU’s memory

and that partitioning which considered the load of

each node would improve run-time—were both em-

pirically supported by our data.

1 Introduction

Fractals are mathematical structures defined
by self-similarity that serve as a foundational il-
lustration of and model for chaos theory. Un-
like calculus-based models which assumes that
the closer an object is examined, the more simi-
lar it becomes to a smooth euclidean ideal, frac-
tals are designed to stay ‘rough’ and complex
at small scales. While the fundamental mathe-
matical idea can be traced back earlier, the term
‘fractal’ was coined and popularized by Benoit
Mandelbrot in his seminal 1982 work The Fractal
Geometry of Nature which used fractals as a way
of modeling natural processes, which similarly
requires the rejection of simplification at small
scales. Such modeling has found widespread and
productive use in fields such as Biology [10] and
Physics [9, 4], along with continued research in
Mathematical Chaos Theory. And, because of
the elegant and succinct equations which under-
lie them, they are particularly useful in Com-
puter Graphics as astonishing illustrations of the
complexity that can be achieved with computers.

One type fractal which became popular in the
Computer Graphics field in the late 2000s is 3-
dimensional (3D) fractals, especially the Mandel-
bulb fractal, a variant of the 2-dimensional (2D)
Mandelbrot, which is generated using recursive
iterations of an imaginary ‘escape-time’ function.
Unlike 2D fractals, which are relatively straight-
forward to display because the value of the frac-
tal can simply be calculated for each point on the

1



plane, 3D fractals require a different approach
to efficiently display. The näıve approach would
be to use standard graphics techniques, like ray
tracing, to generate an image. Using ray trac-
ing, rays of light are extended in incremental
constant-time steps from the ‘eye’s’ viewpoint
until they hit a part of the object, simulating the
way we naturally see. One advantage of this ap-
proach is that it does not require rendering any
non-visible section of the object. However, for
fractals this approach is computationally expen-
sive (though embarrassingly parallel) and mem-
ory inefficient because, unlike typical graphical
constructs which are simple enough to make it
easy to detect if a point is on the objects sur-
face, the calculation for a fractal at each time-
step to determine whether a point is on it is it-
self computationally expensive. Therefore, an-
other approach is necessary. One such approach,
ray marching, was pioneered as early as 1989
by Hart et al. [2] and extensively refined by
Inigo Quilez [7]. In this approach, analytically-
derived distance functions are used which pro-
vide an estimate for the maximum distance a ray
can go without reaching the object. Using these
functions, instead of ray tracing in constant-time
steps, we can ray march in variable-sized ‘jumps’
for this maximum distance. This dramatically
improves performance.

Because ray marching can efficiently take
advantage of ray tracing and because of its
embarrassingly-parallel nature, we thought it
could be applied to graphical processing units
(GPUs). The architecture of these external units
are designed for (and force) embarrassingly-
parallel tasks and fractal generation has a long
tradition of taking advantage of them [5]. And,
in recent years, GPUs have become common-
place enough that many commodity machines
(laptop and desktop) include one. With this
prevalence, we wanted to use (commodity) GPU
clusters to further take advantage of the paral-
lelism inherent in Mandelbulb generation. Our
work explores how to parallelize 3D fractal ren-
dering on a commodity GPU cluster such that we

maximize the speedup and image resolution. In
this experiment, we used the networked, GPU-
equipped computers of the Swarthmore College
Computer Science Department which has both
heterogeneous nodes and, due to broad student
use, widely varying load.

We used a custom CUDA C++ program to
interface with the GPUs and MPI to distribute
the sub-tasks and communicate between nodes,
In order to measure different aspects of the par-
allelized runtime, we modified the resolution of
the output image, the number of nodes, and
the partitioning scheme with which we split up
the nodes work. We hypothesized that, due to
the tradeoff between communication costs and
limited memory, the GPU cluster would have a
faster runtime only when the resulting image was
larger than a single GPUs memory. Additionally,
due to the heterogeneity of nodes, we expected
a partitioning scheme that respected such differ-
ences would out-perform a simple ‘even’ parti-
tioning. Supporting our hypothesis, we found
that our solution scales well with additional
GPUs, especially when the resolution exceeds
the capacity of the GPUs memory. Addition-
ally, the load-respecting partition was markedly
faster than the even partition.

2 Related Work

We were particularly inspired by Hart’s 1989
paper Ray Tracing Determinstic 3-D Fractals
which ray marched the Julia Set (another family
of 3D fractals) in order to render highly detailed
images, even on constrained hardware [3]. This
is this one of the first papers to apply ray march-
ing (which they call ‘unbounding volumes’) to
fractals and is an especially good primer to un-
derstanding more-complicated contemporary ray
marching algorithms. Additionally, analogous to
our work, they used the AT&T Pixel Machine, a
predecessor of modern GPUs, which consists of
64 parallel processors dedicated to graphics pro-
cessing [6]. Even though the processing speed
is quite different (≈ 1 hour for a 1280 x 1024

2



image) and their memory much more physically
constrained, we found their techniques helpful
in optimizing our own algorithm for speed and
memory consumption. Additionally, it is always
inspiring and humbling to read a paper almost
three decades old which remains exceptionally
relevant to modern computer science.

Additionally, the work of Inigo Quilez, who
championed the use of ray marching in graph-
ics, lays the foundation of this work, not only for
ray marching in general, but also for the Man-
delbulb. He has many blog posts about how to
render the Mandelbulb [7] and includes a fully-
functioning web-based version of his code [8].
This online version was especially invaluable in
implementing our code. He also demonstrates
extra optimizations, such as color and rotations.

Additionally in Fractal Art Generation Using
GPUs, Mayfield et al. help motivate much of our
experiments into the speed-up possible by ray
marching fractals with their analysis of 2D frac-
tals. Their analysis of the GPU vs CPU speedup
fractal generation was helpful in understanding
our own speed-up tradeoffs, even though they
only used 1 GPU [5].

3 The Problem and Solution

3.1 The Problem

The problem that we have explored is that of
3D fractal generation through ray marching for
large-scaling resolutions. Ray marching is an ex-
tension of ray tracing, where instead of check-
ing whether or not a vector has hit the surface
at some arbitrary set of distances, it uses a dis-
tance function d(~x), where ~x is a vector that in-
dicates the current position of the ray. This dis-
tance function then calculates the largest pos-
sible sphere around the point ~x such that the
surface that is not within this sphere. Based on
a predefined ε that is an arbitrarily small value,
the distance function “hits” the surface when an
unbounding sphere of size ≤ ε is found. That is
to say, when the distance function tells us that

we are very close to the surface, we consider the
ray on the surface. In the case of the “Mandel-
bulb” fractal, the details of the distance function
are beyond the scope of this paper but has been
previously derived by other posts and papers [2].

While ray marching is an embarrassingly par-
allel problem that can be implemented on a sin-
gle GPU for fast ray marching on relatively small
resolutions, the problem of computing large res-
olutions (On the scale of ≥ 216×216) is not fit for
a single GPU. This is due to the limited memory
of a single GPU, along with the limited number
of possible threads to assign to different resolu-
tion indices. We propose a scalable solution to
this problem.

3.2 Our Solution

Our solution to this problem of large resolu-
tion ray marching is to implement a CUDA/MPI
program that utilizes the messaging capabilities
of MPI to assign indices of a large resolution to
various nodes in the network with usable GPUs.
This remedies the problem of limited GPU mem-
ory, since a cluster scales linearly with the num-
ber of nodes.

More specifically, we are leveraging the Open-
MPI abilities of the Swarthmore Computer Sci-
ence labs to use various connected lab machines
with GPUs to perform these large computations.
Note that the GPUs provided by Swarthmore
have drastically different computational power
and, due to general student use, constantly fluc-
tuating use. Due to the large-scale nature of our
computation, we used the higher-end GPUs for
the majority of our computation. For a certain
run of the computation for an image size of n×n,
we create a one-dimensional array of length n ·n
of integers. We can then partition this in two
different ways.

The simpler of the two is partitioning the n2

length array into m partitions, with the parti-
tion n

m ·m0 to n
m · (m0 + 1) − 1 being assigned

to machine m0, where each machine is arbitrar-
ily assigned a number to establish an ordering
in the set of machines. We call this the ‘even

3



partitioning’ scheme.

The more complex of the two assumes that
GPU load is correlated to the amount of data
stored in the GPU itself. Let n be the number of
GPUs there are and fi be the free memory of the
ith GPU. For each node, we calculate the parti-
tion percentage, denoted xi, which is calculated
by

xi = 100
fi∑n
i=1 fi

.

We then partition the computation such that the
ith node gets xi% of the total data. We call this
the ‘free memory load partitioning’ scheme.

After the computation of the resulting image
is finished, we have an array of length n2 with
each index A[i] being assigned a value based on
the iteration that the computation found an un-
bounding sphere with radius less than some ar-
bitrarily small ε, as was previously talked about
in the general ray marching algorithm. The ar-
ray is then fed into a library to write to a .png

file with a name that identifies which machine in
the set of machines wrote that image so as not
to create duplicates.

Since the lab machine file system is NFS, we
then wait for the file system to process the cre-
ation of these files in the respective sub-directory
to the program. After these files are writ-
ten across the network, we use ImageMagick’s
convert command-line tool to append these files
together to create the final image for the sake of
pretty fractals and verification of our results as
can be seen in 1.

4 Results

After finishing our implementation of ray
marching 3D Fractals, specifically the Mandel-
bulb, through an MPI/CUDA interface, we gath-
ered results based on general relationships be-
tween resolution size and computation time, even
partitioning and load-based partitioning, and of
homogeneous clusters and heterogeneous clus-
ters.

Figure 1: 1024x1024 fractal from our program’s
computation. This image used the 10th itera-
tions of the fractal

The gathering of data was done by timing each
run of computation on a certain sized homoge-
neous or heterogeneous cluster. The sizes of each
cluster ranged from 1 up to 16 in increments
of powers of two. We refrained going above 16
nodes to prevent large disruption of the Com-
puter Science lab machines. We also decided to
limit total computation time to an upper-bound
of 600 seconds. This was to minimize disrup-
tion across the most widely used lab (Clothier)
among students. There was also the issue of find-
ing many GPUs of the same architecture. In the
heterogeneous cluster, we decided to use a host-
file comprised of 16 Quadro M1000M, 8 Quadro
1000M, 4 GeForce GTX 1080, and 4 GeForce
GTX 750. We included over 16 hosts in the case
that some hosts spontaneously fail.

These times were then saved to a .csv file
with rows containing information regarding reso-
lution, nodes, partitioning method (0 for even, 1
for balancing), homogeneity (0 for homogeneous,
1 for heterogeneous), trial number of a specific
run, time taken to partition the data, and time

4



taken to compute the fractal. For the purpose
of consistency, we decided to do 3 trials for each
parameter list to obtain a number of computa-
tion times. We averaged these results if the run
did not fail or exceed 600 seconds, which would
result in a timeout and computation time of −1.
This table was then analyzed to produce the fol-
lowing results.

4.1 Resolution vs. Computation

We found that based on our results, a second-
order regression found that C ∝ R2, where C
is the computation time for a run, and R is the
resolution of that run. This makes perfect sense,
since in order to compute the desired pixel value
for each pixel in the resolution, there are R2 pix-
els in the resolution, resulting in a computation
time relating to R2. This result was consistent
with both heterogeneous and homogeneous clus-
ter runs.

Figure 2 shows this exact relationship on a
2−16 node heterogeneous cluster with even par-
titioning up to resolution 16, 384. The curve was
fit to a second-order regression with an average
p-value on the order of 10−11.

One interesting result that can be seen from
figure 2 is that on the heterogeneous cluster,
the 4-node and 2-node clusters outperformed the
16-node and 8-node clusters. This is likely due
to the architecture of these 2 and 4 node clus-
ters. This can most likely be attributed to the
fact that they are comprised of only NVIDIA
GeForce GTX 1080 GPUs, known to be consider-
ably faster than the other GPUs running on the
lab machines. The clusters that are comprised of
more than 4 nodes use lower powered GPUs for
the partitioned data. These results show that
even a 16-node cluster with 4 GTX 1080s and
12 non-GTX 1080s performs worse on the same
resolution image than a 4-node cluster of GTX
1080s. On average, this 4-node cluster performed
the same job in 59.77% of the computation time
for that of a 16 node cluster, and 67.99% faster
than that of an 8 node cluster. The results of
this are shown in 1, where the runtimes of the 8

Figure 2: Computation Time (s) vs Resolution
for heterogeneous, evenly partitioned nodes. The
relationship shown fits that of C ∝ R2, as is ex-
pected of this algorithm

node and 16 node clusters are used to determine
the speedup of the 4 node cluster, beginning at
resolution 1024.

4.2 Speedup

We also measured the speedup from a 1 node
run to each of the multiple-node runs on a het-
erogeneous cluster with even partitioning. Fig-
ure 5 shows the speedup of the various cluster
sizes ranging from 2 nodes to 16 nodes with res-
olutions up to 4096. The reason larger resolu-
tions are not used to measure speedup is due
to the initial condition we set, where the longest
computation cannot exceed 600 seconds, and due
to how slow a single node is compared to mul-
tiple nodes, 4096 was the highest resolution a
single node could compute in under 600 seconds.
As with before, the heterogeneous 4-node clus-
ter outperformed each of the other node clusters
due to the concentration of high-powered GPUs
on the cluster.

To confirm our intuition, we also provide the

5



Resolutions 16 Node 8 Nodes 4 Nodes 16 Node Speedup 8 Node Speedup

1024 2.93 s 3.75 s 1.19 s 2.44 3.13
2048 7.59 s 11.09 s 3.58 s 2.11 3.09
4096 23.34 s 36.97 s 12.74 s 1.83 2.90
8192 84.55 s 133.88 s 47.23 s 1.79 2.83
16384 299.50 s 475.39 s 171.82 s 1.74 2.76

Table 1: Comparison of Speedups of 4 Node Cluster. 4 Node GTX 1080 clusters run significantly
faster due to the power of the smaller cluster. The speedup for each resolution starting at resolution
1024 is shown above.

speedup of the homogeneous cluster runs in fig-
ure 6, which is the same setup as before except
the cluster is of homogeneous makeup. Here
there is no difference in any of the nodes com-
putation power due to it being a homogeneous
cluster, therefore the results reflect our intuition
that the 16-node cluster will have the largest
speedup. Adding more nodes to perform compu-
tations clearly has a positive effect on the run-
time as the image size increases to unmanageable
sizes for a single-node GPU.

4.3 Partitioning

In comparing the two different partitioning
schemes, we hypothesized that the free memory
load partitioning scheme would perform better
in a heterogeneous cluster of higher node val-
ues. This is due to the fact that this parti-
tioning scheme partitions more of the image to
compute to nodes with more free memory. As
stronger GPUs tend to have more free memory,
this allows more computation to be performed
on more powerful GPUs, significantly speeding
up the computation time.

This hypothesis was reflected in our results
when comparing the two partitioning schemes
with computation runtime as the metric. Fig-
ure 7 shows the box plots of each computation
time spread for resolutions 256 up to 16384 iter-
ating in powers of two for both even partitioning
on a heterogeneous cluster, and load partitioning
on a heterogeneous cluster. It is clear that load
partitioning has reduced the overall runtime of

the 16 node cluster, which is especially preva-
lent in larger resolutions. This is also reflected
in figure 4, where the lineup of computation time
roughly matches what we would expect thanks to
the free memory load partitioning scheme. As we
have stated in previous sections, this partitioning
scheme in practice greatly helped the runtime of
larger heterogeneous clusters, which shows the
promise of providing a more clever partitioning
algorithm to minimize computation time.

5 Conclusions and Future Di-
rections

We have implemented a 3D fractal rendering
software that uses ray marching technology and
runs on GPU clusters. We chose fractals due to
the large amounts of computation power neces-
sary to perform ray marching on such a surface,
the beautiful detail that results from these com-
putations, and the embarrassingly parallel na-
ture of the computation.

We found our implementation to successfully
capture our goals for this project. We saw
promising results in the power of ray marching
through a GPU cluster, allowing for much larger
resolutions of images to be calculated in lower
increments of time due to the sheer abundance
of resources in clusters. This is especially re-
flected in figure 6 and 5, where speedup only in-
creases as the resolution sizes scale to very large
values. To further optimize the implementation,
the load partitioning scheme proved very useful

6



Figure 3: Graph of Computation Time (s) vs
Resolution for Homogeneous Clusters. The Ho-
mogeneous cluster displays the same relation-
ship, but the overall cluster power is lower due
to the less powerful GPUs, resulting in longer
computation overall

as shown from figure 7, where the downsides of
a heterogeneous cluster, such as having wasted
resources on powerful nodes, are diminished by
taking into account the resources available at
each node. While this may take O(n) time with
a näıve implementation where n is the number of
nodes, this will pale in comparison to the runtime
of a very large resolution image, showing the im-
portance of accounting for valuable resources.

5.1 Extensions

There are various ways our project could
be extended—we have come up with five pos-
sible extensions for this project: support for
nodes with multiple GPUs, development of large
scale distributed image stream processing soft-
ware, shaders based on other fractal computa-
tion algorithms, explorations of other partition-
ing schemes, and creation of 3D fractal anima-
tions.

Figure 4: Graph of Computation Time (s)
vs Resolution for Heterogeneous, load partition
clusters. Here we see again that higher-node
clusters see a speedup when compared to smaller
clusters in terms of runtime. This is thanks to
a more efficient usage of resources thanks to a
partitioning scheme that takes into account the
power of the varied GPUs in the cluster.

5.1.1 Multi-GPU Nodes

Our program assumes that the cluster has
one GPU per per node. Many nodes on
XSEDE have more than one GPUs. If we can
leverage these multi-GPU nodes by using the
cudaGetDeviceCount command in CUDA, we
could potentially observe a considerable amount
of speedup. As a result, the method of partition-
ing based on simply node ordering in the set of
nodes would need to be modified.

This could potentially turn into a hashtable
of different GPUs to different nodes that then
get ordered and the method should not change
much. If the number of GPUs per node is not
uniform, then the communication of the loca-
tions of all GPUs would need to happen in at
most linear time, potentially in logarithmic time
with a map-reduce implementation.

7



Figure 5: Speedup of multiple-node runs for het-
erogeneous, evenly partitioned resolution. Note
in this case, since the 4-node cluster is comprised
of very powerful GPUs, the especially fast com-
putation time observed in section 4.1.

5.1.2 Large Scale Distributed Image
Stream Processing Software

We only measured the partitioning time and
the compute time in our software because the
main time bottleneck of the whole software was
the write to the NFS and the appending of the
large images. Furthermore, our convert com-
mand to append all the images gave errors when
the images were too large. To address these is-
sues, we suggest developing or utilizing existing
large scale image stream processing softwares to
join large images. To remedy the issues brought
by NFS, this program could be run on a tightly-
coupled architecture with a powerful parallel file
system such as lustre that XSEDE runs [1] to
reduce the network penalties.

Figure 6: Speedup of multiple-node runs for ho-
mogeneous, evenly partitioned resolution. Re-
sults are compared to a single-node cluster to
measure speedup.

5.1.3 Shading Using Other Fractal Com-
putation Algorithms

In regards to estimating 3D fractals, ray
marching is superior to ray tracing and
the escape-time algorithm in various ways—
including space usage and time consumption.
One major downside of ray marching, however,
is the loss of wondrous colors that escape-time
algorithms give. Our program only colors the fi-
nal image in monochrome. We could instead en-
joy vivid shadings of 3D fractals. Thus, in order
to give life to these fractals, for future work, we
suggest streaming the computed points and the
neighboring points around the computed points
(perhaps the points within distance of ε away)
and feeding them into the escape-time algorithm.
This would not only alleviate the space consump-
tion problem given by the escape-time algorithm,
but would also give us the exact location of the
surface points on the 3D fractal. We have also
come across alternative ways of coloring the 3D
fractals. Orbit traps is one way of coloring frac-

8



Figure 7: Box plots of the two partitioning
methods used on a 16-node heterogeneous clus-
ter. X-axis scaled logarithmically to reflect iter-
ation steps. The computation time for the even
partitioning at higher resolution values increases
compared to the free memory load partitioning
scheme as resolution increases.

tals where one chooses a static geometric object
and then keeps track of how close the orbit comes
to the object. Implementing orbit traps in our
program is in our plans for future projects.

5.1.4 Partitioning

We have explored two different types of data
partitioning in this paper: even distribution of
data and memory load distribution. In the fu-
ture, we intend to implement other types of par-
titioning schemes. One that we have in our
minds is the spill-over partitioning scheme where
we first sort the nodes based on the amount of
free GPU memory, and then use the smallest
number of nodes. If communication costs be-
tween nodes is expensive, we believe the spill-
over partitioning scheme will perform faster than
the two partitioning schemes we investigated in
this paper, because the spill-over partitioning

scheme uses the smallest number of nodes by def-
inition, and thus will have coarser granularity of
communication.

5.1.5 3D Fractal Animations

There exists transformation distance-
estimation functions that we could use for
transforming our 3D fractal in many ways,
which include but not limited to: rotations,
translations, scaling, twisting, and bending. We
also know that rendering consecutive frames of
a video is embarrassingly parallel. Thus, for
another future project, we can render multiple
frames of an animation in parallel, perhaps
distributed across multiple nodes with GPUs.

6 Meta-discussion

6.1 Makefiles

The compilation process for this project was
unfamiliar to us from the outset due to most
labs up to this point being written in C/C++
also came with a predefined Makefile. We were
put to the task of mapping out the dependencies
between different files and classes, and as a result
made sure that functions were defined properly
in the appropriate scope and no re-definitions
were possible in the compilation process. Finally,
we needed to ensure that make clean removed
the respective .o and .png files. We found that
an effective way of doing this was by searching
for the files with those extensions at clean-time
and removing them.

When moving from simply CUDA to a com-
bination of CUDA/MPI, the task was then to
construct a makefile that properly links the two
different compilers together with regards to the
respective files that included any CUDA or MPI
defintions. To accomplish this, we decided on
changing the backend compiler of nvcc through
the -ccbin= flag.

9



6.2 Asynchronous CUDA

This was a very subtle problem we had. Ini-
tially, we timed the computation of the frac-
tal by wrapping the call in gettimeofday()

calls which worked fine in previous labs that did
not utilize CUDA. The issue with this is that
CUDA kernel calls are asynchronous, therefore
this gettimeofday() block wrapping the kernal
call simply measures the runtime of setting up
the kernel, rather than the actual runtime of the
kernel. To remedy this, we used the function
cudaDeviceSynchronize() to force the system
to wait until the kernel call was complete, finally
yielding correct timings. Before finding these
correct timings, every resolution and node num-
ber yielded approximately the same runtimes for
the kernel call which greatly confused us.

6.3 Threading Issues

In the implementation process of our project,
we found in the initial CUDA-only implementa-
tion stages of development that the GPUs will
silently fail if too many threads or resources
are requested for the execution of the program.
This problem would arise on a single GPU
for resolutions higher than 8192 × 8192. The
form that the failure took on was seemingly in-
stantaneous calculation time, a clear indicator
that something has gone wrong. Upon calling
cudaGetLastError(), which forces the last er-
ror found on the GPU to be described, we found
that the reason for failure was a combination
of too many threads requested to compute and
numerous out-of-bounds errors on calculating a
thread’s ID in the grid-block-thread architecture
of the GPU. After fixing these errors, things went
smoothly thereon.

6.4 Experiment Design

Originally, we also intended to look at the time
it takes for the array to be processed into a .png

file and then the time taken to convert each of
the individual .png files produced by separate
nodes. We found this to be out of line with the

goals of this paper since it is not a measure of
our own process, it is merely timing other peo-
ple’s work for their processes. If we had the time
to also produce a large scale distributed image
processing software or program, then this would
be a fine measure, but in this case we scrapped
that dimension of testing.

6.5 Changes from Proposal

In our original proposal, we anticipated focus-
ing largely on implementing an escape-time al-
gorithm that would allow is to sparsely generate
3D fractals based purely on analysis. Instead, we
decided to approach the computation and visual-
ization of fractals through ray marching based on
known distance functions. We decided this be-
cause we felt that this approach would be more
efficient and simpler in a number of ways. For
one, ray marching only generates points which
would be visible by a certain viewpoint rather
than generating the entire surface. This ap-
proach also easily coupled the two difficulties of
computation and visualization far better than
pure calculation on a point-by-point basis. If an
escape-time algorithm were used for a huge num-
ber of points in 3D space, there would also be the
problem of verification of the algorithm, which
would presumably be done by further analysis,
as well as the visualization of the fractal.

We also decided to scrap the 2D implementa-
tion of the Mandelbrot fractal. This was due to
the fact that this has been rigorously researched
and implemented in countless architectures and
programming paradigms, including CUDA.

Since we decided on the ray marching ap-
proach, the idea of writing a number of encoded
values to represent points that are “on” the frac-
tal surface was also scrapped since ray marching
itself produces a visualization that must simply
be converted to a readable format. This is remi-
niscent of the Fire Simulator lab, where all that
needed to be done was to feed an array of num-
bers to a kernel or library that would be able
to write this array to an appropriate format or
produce a visualization on the fly.

10



References

[1] Stephanie Donovan, Linux Symposium,
Andi Kleen, Matthew Wilcox Hewlett-
packard, Gerrit Huizenga Ibm, Andrew
J. Hutton, Martin K. Petersen, Wild
Open Source, and Philip Schwan. Lustre:
Building a file system for 1,000-node clus-
ters. 08 2003.

[2] John C Hart, Daniel J Sandin, and Louis H
Kauffman. Ray tracing deterministic 3-d
fractals. In ACM SIGGRAPH Computer
Graphics, volume 23, pages 289–296. ACM,
1989.

[3] John C Hart, Daniel J Sandin, and Louis H
Kauffman. Ray tracing deterministic 3-d
fractals. In ACM SIGGRAPH Computer
Graphics, volume 23, pages 289–296. ACM,
1989.

[4] Magdalena Malankowska, Stefan Schlaut-
mann, Erwin J. W. Berenschot, Roald M.
Tiggelaar, Maria Pilar Pina, Reyes Mallada,
Niels R. Tas, and Han Gardeniers. Three-
dimensional fractal geometry for gas per-
meation in microchannels. Micromachines,
9(2), 2018.

[5] Will Mayfield, Justin Eiland, Taylor
Hutyra, Matt Paulsen, Bryant Wyatt, et al.
Fractal art generation using gpus. arXiv
preprint arXiv:1611.03079, 2016.

[6] Michael Potmesil and Eric M Hoffert. The
pixel machine: a parallel image computer.
In ACM SIGGRAPH Computer Graphics,
volume 23, pages 69–78. ACM, 1989.

[7] Inigo Quilez. Mandelbulb. http:

//www.iquilezles.org/www/articles/

mandelbulb/mandelbulb.htm.

[8] Inigo Quilez. Mandelbulb. https://www.

shadertoy.com/view/ltfSWn.

[9] Yu-Te Wu, Kuo-Kai Shyu, Tzong-Rong
Chen, and Wan-Yuo Guo. Using three-
dimensional fractal dimension to analyze
thecomplexity of fetal cortical surface from
magnetic resonance images. Nonlinear Dy-
namics, 58(4):745, Apr 2009.

[10] Luduan Zhang, Jing Z. Liu, David Dean,
Vinod Sahgal, and Guang H. Yue. A
three-dimensional fractal analysis method
for quantifying white matter structure in
human brain. Journal of Neuroscience
Methods, 150(2):242 – 253, 2006.

11

http://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm
http://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm
http://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm
https://www.shadertoy.com/view/ltfSWn
https://www.shadertoy.com/view/ltfSWn

	Introduction
	Related Work
	The Problem and Solution
	The Problem
	Our Solution

	Results
	Resolution vs. Computation
	Speedup
	Partitioning

	Conclusions and Future Directions
	Extensions
	Multi-GPU Nodes
	Large Scale Distributed Image Stream Processing Software
	Shading Using Other Fractal Computation Algorithms
	Partitioning
	3D Fractal Animations


	Meta-discussion
	Makefiles
	Asynchronous CUDA
	Threading Issues
	Experiment Design
	Changes from Proposal


