
The Equivalence of Typed λ Calculi

and Cartesian Closed Categories

Kei Imada

January 2019

Abstract

Typed λ calculi are abstract programming languages that form the bases for typed functional pro-
gramming languages like Haskell. It enables the formalization of type system designs in programming
languages, which helps reduce possibilities for bugs in computer programs. It turns out that typed λ
calculi are structurally equivalent to a kind of category in category theory called the Cartesian closed cat-
egory. This entails the potential to use category theory to prove properties of a type system in functional
programming languages, and vice versa. Most texts on this topic are difficult to understand without
prior knowledge of graduate level mathematics and programming language theory. So we seek to make
this topic accessible to undergraduate mathematics majors, assuming only basic knowledge of set theory
and group theory.

Introduction
What do we think when we’re asked, “so what’s

the relationship between mathematics and computer
science?” Some may think of the field of computa-
tion theory, where we define the notion of a Turn-
ing machine to abstract computers and prove that
some problems are computationally hard or impos-
sible. Others may think of statistics, employed in
machine learning and artificial intelligence to create
predictive models and heuristics. Other than these
two, we have cryptography, linear programming, and
a plethora of other applications.

Despite our knowledge of the diverse applications
of mathematics in computer science, many who study
both mathematics and computer science are unaware
of the inherent connection between category theory
and functional programming languages. It is surpris-
ing to find that a field of mathematics as theoretical
as category theory can be directly applied to some-
thing so practical.

Originating from algebraic topology around the
1940s, category theory is a relatively new field of
mathematics. In short, category theory is a branch
of mathematics generalizing mathematical structures
and structure-preserving maps. Over the past few
decades, this field, deemed one of the most theoreti-
cal, has demonstrated its ability to act as a powerful
conceptual framework, allowing us to see the relation-
ships between a collection of structures of any kind.

This paper is about building a bridge between
two massive continents, mathematics and computer
science. In particular, we will traverse the borders
of category theory and programming language the-
ory, or more specifically, where the land of Cartesian
closed categories meets the land of typed λ calculi.

In order to build this bridge, we must first un-
derstand the two coasts it connects. So we will first
define Cartesian closed categories. To do that, we
discuss the fundamentals of category theory. We will
define what a category is, and then provide impor-
tant definitions to understand the rest of the paper.
This includes the utility of diagrams, isomorphisms,
terminal objects, products, and exponentiation. Af-
ter we define these ideas, we find that the definition
of Cartesian closed categories is effortless.

We then describe the concept of the bridge we are
constructing, namely the equivalence between cate-
gories. We define mappings between categories called
functors, and equivalences between functors called
natural isomorphisms.

We then define the other side of the bridge, typed
λ calculi, which are abstract programming languages
that have types, expressions, and equations.

After we build a foundation in category theory
and programming language theory, we finally con-
struct the bridge between the lands of Cartesian
closed categories and typed λ calculi, in other words,
the equivalence between the two ideas.

So without further ado, let’s get on with it!

1



Basic Category Theory
In order to truly appreciate the applications of

category theory, we must first understand category
theory. Here are all the category theory we need to
know to understand this paper.

Categories
Category theory is a study of objects and arrows

between them, called morphisms which together are
called a category.
Definition 1 (Category). C is a category if it has
the following:
1. A collection of objects, denoted ob C.
2. A collection of morphisms between objects, de-

noted Mor C. We often want to examine the col-
lection of morphisms between two objects, say
A,B ∈ ob C, which we will denote C(A,B).

3. Well defined operations mapping each arrow f its
domain dom f and its codomain cod f . We de-
note f : A → B to show that dom f = A and
cod f = B.

4. An associative composition binary operator for
morphisms. This operator assigns two morphisms,
f and g with cod f = dom g, a composite mor-
phism g ◦ f : dom f → cod g. This operator
must also be associative, in other words, for all
f : A→ B, g : B → C, and h : C → D,

(f ◦ g) ◦ h = f ◦ (g ◦ h).
In most cases, we define morphism equality as the
set-theoretic function equality.

5. Unique Identity morphisms for each object. In
other words, for every object A, there is a mor-
phism 1A : A→ A where for any arrow f : A→ B,

1B ◦ f = f and f ◦ 1A = f.
We will call this equality the identity law.

Example (Set). The objects of Set are sets. The
morphisms of Set are total functions, functions that
are well defined for all input, with specified domains
and codomains. The composition is the usual compo-
sition between two functions, and the identity mor-
phisms are the identity functions.
Remark. We need to specify the domain and the
codomain to make sure our dom and cod operators
are well defined. Take the total function that maps
x ∈ R to x2 for example. f maps real numbers to
real numbers, so cod f = R. On the other hand, f
also maps real numbers to R≥0, so cod f = R≥0.

Here’s an example of verifying that something is
a category:

Proposition 1. Set is a category.
Proof. Criteria 1 through 3 are trivial (we just de-
fined them above), so we focus on criteria 4 and 5.

4. By definition, the composition morphism of to-
tal functions f : A → B and g : B → C is
g ◦ f : A → C, x 7→ g(f(x)). The associative
property of total function compositions as well as
the property that total functions are closed under
compositions are both well known in set theory.

5. For any set A, we know that identity functions are
total functions. We can also check the identity law
with simple calculations.

With this we verified that Set is a category.

It so turns out that many categories are comprised
of objects as “sets with structure” and morphisms as
“structure preserving maps.” Table 1 lists several
that may be familiar.

Category Objects Arrows
Set sets total functions
Grp groups group homomorphisms
Vect vector spaces linear transforms
Top topological spaces continuous spaces

Table 1: Categories where objects are sets with struc-
ture and morphisms are structure preserving maps

We end the introduction to categories with an ex-
ample of peculiar categories which show an exception
to the intuition above.
Example. Let G be a group. The category G has a
single object, and the morphisms are the elements of
G. The identity element e ∈ G is the identity for the
object, and the composition between two morphisms
(elements of G) is the binary operation · associated
with G.

We can define categories based on what we want
to examine. If we want to study groups, we may look
at Grp, and if we want to investigate the elements of
a specific group, we would instead analyze the exam-
ple above.

Diagrams
Many of our constructions in category theory will

be complicated without a way to visually represent
statements about objects and morphisms. This is
why we use a graphical style of presentation, called a
diagram.
Definition 2 (Diagram). Given a category C, a di-
agram is a collection of vertices and directed edges,
where every vertex v is labeled with an object A and
every edge e is labeled with a morphism f : A → B
such that its head is A and tail is B.

Here’s a simple example describing f : A→ B.

A B
f

To fully utilize diagrams, we must be able to translate
properties of categorical constructions to diagrams.

2



We do this by stating that a particular diagram com-
mutes.
Definition 3 (Commuting diagram). Given a dia-
gram D in a category C, D commutes if for every
pair vertices A,B ∈ V (D), all morphisms represent-
ing paths in the diagram from A to B are equal.
Example. The diagram below commutes if f ′ ◦ g =
g′ ◦ f .

A B

C D

f

g g′

f ′

Remark. We can always find a representing morphism
from a path by the definition of the category, namely
compositions.

To motivate the power of diagrams, we define an-
other type of category, the arrow category.
Definition 4 (Arrow category). Given category C,
its corresponding arrow category, denoted C→, is a
category where ob C→ = Mor C are the objects. A
C→-morphism between C-morphisms f : A→ B and
f ′ : A′ → B′ is a pair of C-morphisms (a, b) where
the diagram below commutes.

A A′

B B′

a

f f ′

b

The composition of C→-morphisms (a, b) : (f : A→
B) → (f ′ : A′ → B′) and (a′, b′) : (f ′ : A′ → B′) →
(f ′′ : A′′ → B′′) is (a′, b′)◦(a, b) = (a′◦a, b′◦b), which
corresponds to “gluing” the two squares together:

A A′ A′′

B B′ B′′

a

f f ′

a′

f ′′

b b′

Given a C-object f : A→ B, its identity is (1A, 1B).

The diagrams give a helpful visual that helps us
understand how the arrow category is constructed.
Because of their utility, we use diagrams extensively
throughout this paper.

Morphisms
In category theory, we focus on morphisms rather

than objects, as we will see in later sections. In gen-
eral, category theory doesn’t examine the internal
structure of objects, but rather, treat objects as black
boxes. This is because objects can have various types
of structure. For example, they are sets in Set, ele-
ments in a group G when G is treated as a category,
and even morphisms in a C→ category. So instead

we focus on the properties of morphisms between ob-
jects. The next four sections show constructions in
category theory that are analogous to common struc-
tures in mathematics. But before that, we will define
what it means for two objects to be the “same,” or
isomorphic.
Definition 5 (Isomorphism). A morphism f :
A → B is an isomorphism if ∃ f−1 : B →
A such that f−1 ◦ f = 1A and f ◦ f−1 = 1B . Two
objects A,B are called isomorphic if there exists an
isomorphism between them.
Example (Isomorphisms in Set). Isomorphisms in
Set are bijective functions. By definition, an iso-
morphism f : A → B is a total function that has an
inverse f−1 such that f−1◦f = 1A and f ◦f−1 = 1B .

Terminal Objects
A terminal object in a category is an object

where every object has a unique morphism to it.
Definition 6 (Terminal object). An object 1 is ter-
minal if, for every object A, there is one and only one
morphism from A to 1.
Example (Terminal objects in Set). Every one-
element set {x} is a terminal object in Set. Given
any set A ∈ ob Set, there is only one total function
from f : A → {x}, namely a 7→ x. The empty func-
tion is vacuously a total function.

Terminal objects provide a categorical analogue
of singletons, as shown in the previous Set example.

Products
Here we provide a category theory analogue of the

Cartesian product of sets, the product of objects in
a category. In set theory we define the product of two
sets as

A×B = {(a, b) : a ∈ A and b ∈ B}.
However, we shouldn’t use this definition in category
theory because we want to treat every object as a
black box, as mentioned in Morphisms. Instead, we
should define products with the properties of mor-
phisms between them and other objects.

What we realize is that when we create a set
product A × B, we also implicitly create projec-
tion functions π1 : A × B → A, (a, b) 7→ a and
π2 : A × B → B, (a, b) 7→ b. That means we can
think of a product as a tuple (A×B, π1, π2).

We also find that for every set C and functions
f : C → A and g : C → B, we can find a function
h : C → A× B such that f = π1 ◦ h and g = π2 ◦ h,
namely, x 7→ (f(x), g(x)). This function h is called a
mediating morphism and is denoted 〈f, g〉 := h. We
now define products with this motivation.
Definition 7 (Products). Given two objects A and

3



B in a category C, its product, denoted A × B, is
an object of C with two projection functions π1 :
A × B → A, π2 : A × B → B such that for every
object C and morphisms f : C → A and g : C → B,
∃! 〈f, g〉 : C → A×B, called a mediating morphism,
such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g.

We can show this definition as the following com-
muting diagram.

C

A A×B B

〈f, g〉f g

π1 π2

We say that a category C has products if for any
two objects A and B, there exists a product.

Now we show that a set product A × B fits the
definition above.
Proposition 2. In Set, the product of objects A and
B is their Cartesian product A×B.

Proof. Let X be a set and x1 : X → A and x2 : X →
B. Consider the function 〈x1, x2〉 : X → A × B,
x 7→ (x1(x), x2(x)). By definition x1 = π1 ◦ 〈x1, x2〉
and x2 = π2 ◦ 〈x1, x2〉. To show uniqueness of
〈x1, x2〉, suppose there is a morphism f : X → A×B
such that x1 = π1 ◦ f and x2 = π2 ◦ f . Take x ∈ X,
and denote 〈x1, x2〉(x) = (a, b) and f(x) = (a′, b′).
By definition a = π1((a, b)) = π1(f(x)) = x1(x) =
π1(〈x1, x2〉(x)) = π1((a′, b′)) = a′, and similarly,
b = b′, and thus (a, b) = (a′, b′). So f = 〈x1, x2〉.
Since (X, f1, f2) was arbitrary, (A×B, π1, π2) is the
product of A and B in Set.

Products are not unique. For example, in Set,
(A × B, π1, π2) and (B × A, π2, π1) are both prod-
ucts of sets A and B. However, there are bijections
between A × B and B × A, (a, b) 7→ (b, a). This
means that they are the same up to isomorphism. It
turns out that in any category, every product of two
objects is unique up to unique isomorphisms.
Proposition 3. Products of two objects are unique
up to unique isomorphisms.

Proof. Let C be a category and A,B,C,C ′ ∈ ob C
such that C and C ′ are products of A and B. Let
(π1, π2) and (π′1, π

′
2) be the respective pairs of pro-

jection functions. By definition, there exists unique
mediating morphisms f = 〈π1, π2〉 : C → C ′ and
g = 〈π′1, π′2〉 : C ′ → C. Consider the diagram below.

C C ′

C C ′

f

1C

g
1C′

f

By the uniqueness of mediating arrows, f ◦ g = 1C
and g ◦ f = 1C′ , so the diagram commutes. With the
same uniqueness we deduce that f and g are the only
functions that satisfy this condition. We have found
a unique isomorphism between C and C ′, so products
of two objects are unique up to unique isomorphisms.

Remark. We can replace products with terminal ob-
jects and mediating arrows with the unique mor-
phisms with terminal objects as codomains. With
this we find a more general theorem:

Proposition 4. All terminal objects are unique up
to unique isomorphisms.

Proof. Essentially the same as the proof above.

The consequence of this theorem is that, if it ex-
ists, we can refer to the product of A and B, without
having to worry about the statement being well de-
fined. We will denote the product object of A and B
as A×B, courtesy of the Cartesian product notation
in set theory.

It will be useful in the next section to talk about
morphisms between two product objects
Definition 8 (Product map). If A × B and C ×D
are product objects, for every pair of functions f :
A → C and g : B → D there exists a product map
f × g : A×B → C ×D, defined as 〈f ◦ π1, g ◦ π2〉1.

Exponential objects
The last object we must examine to understand

Cartesian closed categories abstracts the notion of the
set of morphisms from one object to another. In set
theory it would be equivalent to the set of all func-
tions from set A to set B.

BA = {f : A→ B}
As we did with products, we would like to character-
ize BA with morphisms instead of elements.

When defining products, we found that a prod-
uct is accompanied with two projection morphisms.
Similarly, we notice that BA is associated with a
special evaluation morphism eval : (BA × A) → B,
(f, a) 7→ f(a).

The crux of the categorical definition is based on
the observation that this eval function has the prop-
erty that for every g : X × A → B, there exists a
unique function curry(g) : X → BA such that the
diagram below commutes.

BA ×A B

X ×A

eval

gcurry(g)×1A

1We don’t need to say which products the πi’s are associated with because of the typed nature of category theory.

4



To further explain, for every x ∈ X we have a func-
tion gx : A → B, a 7→ g(x, a), in other words, the
function that fixes the first argument of g to be x.
curry(g) is then defined as x 7→ gx.

We now show that this definition of curry(g) is
correct and is unique.
Proposition 5. curry(g) : X → BA, x 7→ gx is the
unique function that makes the diagram above com-
mute.

Proof. For any (x, a) ∈ X ∈ A, we have
(eval ◦(curry(g)× 1A))(c, a) = eval(curry(g)(x), a)

= eval(gx, a)

= g(x, a).
This shows that the above diagram commutes.
We show uniqueness by noting that g(x, a) =
eval(curry(g)(x), a) = (curry(g)(x))(a), curry(g)(x)
maps a 7→ g(x, a), so curry(g)(x) = gx.

Now that we have a motivation for the definition
of exponential objects in Set, let us generalize this
for a general category C with products.
Definition 9 (Exponential objects). Let C be a cat-
egory with products and let A and B be objects of C.
An object BA is called the exponential object if there
is a morphism evalAB : (BA × A)→ B such that for
any object X and morphism g : (X ×A)→ B, there
is a unique morphism curry(g) : C → BA where the
diagram below commutes.

BA ×A B

C ×A

eval

gcurry(g)×1A

Proposition 6. In Set, the exponential object of A
and B is BA = {f : A→ B}.
Proof. We need only state that curry as defined above
fits the bill, because we showed in Proposition 5 that
curry is the unique morphism that makes the above
diagram commute in Set.

Similarly to products, we say that a category C
has exponentiation if it has an exponential BA for
every pair of objects A and B.

Cartesian Closed Categories
Now that we defined categories, terminal objects,

products, and exponentiation, we can give the full
definition for Cartesian closed categories.
Definition 10 (Cartesian closed categories). A cat-
egory C is called a Cartesian closed category if it has
products, exponentiation, and a terminal object.
Example. Set is a Cartesian closed category. The
terminal object is a singleton {a}, the product of sets
A and B is its Cartesian product A × B = {(a, b) :

a ∈ A, b ∈ B}, and their exponential object is the
function set BA = {f : A→ B}.

Later we will find that Cartesian closed categories
are inherent in all functional programming languages
in the form of their type systems. In order to do that,
we must talk about what it means for two categories
to be the same, or equivalent, which we will do in the
next section.

Equivalence of Categories
Here we define what it means for two categories

to be equivalent. To do this in a category theo-
retic fashion, we must define mappings analogous to
morphisms between categories, called functors, then
define equivalences between functors, or natural iso-
morphisms.

Functors
Functors give structure preserving mappings be-

tween categories. Since categories have both objects
and morphisms, functors must map them both.
Definition 11 (Functors). A functor F from cate-
gory C to category D, denoted F : C → D, maps
objects of C to objects of D and morphisms of C
to morphisms of D, such that for all A ∈ ob C and
composable morphisms f, g ∈ Mor C,
1. F (1A), and
2. F (f ◦ g) = F (f) ◦ F (g).
Example (Forgetful functors). Take the functor F :
Grp→ Set where each group is mapped to its under-
lying set and each homomorphism to its underlying
function. This is called a forgetful functor because
the functor “forgets” some structures of the domain,
for example, the associative binary operation in Grp.
Example (Power set). The Power set functor is
P : Set→ Set, where each set is mapped to its pow-
erset, and each f : A → B is mapped to a function
P(f) : P(A) → P(B), X 7→ f(X). Such functors
that map categories to itself is called an endofunctor.
Remark. We can think of functors as morphisms be-
tween categories. In fact, they give rise to the cate-
gories of categories Cat where the objects are cate-
gories and morphisms are functors. To avoid contra-
dictions such as Russel’s paradox, we generally dis-
tinguish between large and small categories. Small
categories are those whose collections of objects and
morphisms are both sets. Then Cat is the category
of all small categories, which is itself a large category.
Example (Identity functors). Given a category C,
the identity functor 1C is the identity morphism of
C when considered as an object in the category Cat.
In other words, it is the functor that maps objects
and morphisms to themselves.

5



Natural Isomorphisms
In essence, natural isomorphisms form equiva-

lences between two functors where we view a collec-
tion of isomorphisms as a form of equivalence.
Definition 12 (Natural Isomorphisms). A natural
isomorphism between functors F : C → D and
G : C → D is denoted η : F ⇒ G, and maps each
object c in C an isomorphism ηc : F (c) → G(c) in
D such that for any morphism f : x → y in C, the
diagram below commutes.

F (x) F (y)

G(x) G(y)

F (f)

ηx ηy

G(f)

Nontrivial examples of natural isomorphisms are
hard to come by. So we give a trivial example.
Example. Needless to say, there exists a natural iso-
morphism between a functor F : C → D to itself,
where it maps each c ∈ ob C an identity morphism
1F (c). The proof is clear with the commuting dia-
gram below.

F (x) F (y)

F (x) F (y)

F (f)

1F (x) 1F (y)

F (f)

Remark. Relaxing the definition from isomorphisms
to morphisms gives us natural transformations.

Equivalence of Categories
Now that we know what functors and natural iso-

morphisms are, we can define the equivalence of two
categories.
Definition 13 (Equivalence of categories). The
equivalence of A and B is a pair of functors, F :
A → B and G : B → A, and natural isomorphisms
ε : F ◦G⇒ 1A and η : 1B ⇒ G ◦ F .

Note the similarity between this definition and the
definition of isomorphisms, where the significant dif-
ference is the natural isomorphisms being the equiv-
alence of functors.

Since it’s hard to give a nontrivial, clear example,
we give the most trivial example, that a category is
equivalent to itself
Example. The equivalence of category C to itself is
(1C,1C) where 1C : C→ C is the identity functor.
Remark. Relaxing the definition from natural isomor-
phisms to natural transformations gives us adjoints.

We now turn to typed λ calculi, and provide its
definition. With the definition, we will construct an
equivalence between Cartesian closed categories and
typed λ calculi.

Typed λ Calculus
Similar to Turing machines formalizing sequential

computation models, typed λ calculi formalize func-
tional computation models. They are foundational
programming language models that form the bases of
typed functional programming languages like Haskell.
In short, a typed λ calculus L is a three tuple of
types, expressions, and equations. For simplicity,
let L = (T, Expr, E) denote the typed λ calculus we
are defining throughout this section.

Types
A type is an attribute we assign to expressions.

This is similar to the way we call 1 a Number and
a coffee a Drink. The types of L has two rules:
the existence of a Unit type and that they are closed
under the pairing and the exponentiation operators.
Formally, they are defined below.
Definition 14 (Types). T are the types of L if
1. Unit ∈ T
2. ∀ A,B ∈ T ⇒ A×B and BA ∈ T
Remark. There may be basic types other than Unit.
For example, Scott and Lambek assume the numbers
type as another type [4] and Pierce assumes a gen-
eral version of any number of types [11]. In fact, this
extensibility of the typed λ calculus is what makes
the definition so powerful that most if not all typed
functional languages can be modeled with typed λ
calculi.

Expressions
Informally, expressions are building blocks used

in programming using the typed λ calculus. The ex-
pressions Expr of L are generated from variables and
expression forming rules with these constraints. All
expressions also are assigned a type according to type
rules, and with it we also give the expression form-
ing rules. We will denote a : A to denote that an
expression a ∈ Expr and has type A.
Definition 15 (Expression). Expr are the expres-
sions of L if for all M,M1,M2 ∈ Expr and A ∈ T ,
the type rules and expression forming rules be-
low are satisfied.
Unit () : Unit
Var xAi : A ∀ i ∈N
Func M : B ⇒ (λx : A. M) : BA

Appl M1 : BA, M2 : A⇒ (M1 M2) : B
Pair M1 : A,M2 : B ⇒ (M1, M2) : A×B
Fst M ∈ A×B ⇒ fstM : A
Snd M ∈ A×B ⇒ sndM : B

With these rules we can generate infinitely many
expressions. For example, ((), ()) : Unit× Unit is an
expression, (((), ()), ()) : (Unit × Unit) × Unit and

6



((((), ()), ()), ()) : ((Unit× Unit)× Unit)× Unit are
also expressions, and so on.

Let’s look at each individual rule. 15 gives us
the expression () : Unit, which is called the unit ele-
ment. Its purpose is to exist as an expression of type
Unit. The rule 15 gives us countably many expres-
sions xAi : A for every type A.

The 15 rule gives us expressions of form λx :
A.M : BA, which are functions taking x as an ar-
gument with type A and M : B is the definition of
the function.
Example. (λx : Unit. x) : UnitUnit describes a func-
tion that takes in an argument with type Unit and re-
turns itself, hence the type UnitUnit. We draw an ana-
logue to our previous notation of functions as x 7→ x
where x is of type Unit.

The expressions of form (M1 M2) : B are func-
tion applications where M1 has type BA (thus are
functions taking an argument of type A to an expres-
sion of type B), and M2 : A is the argument for the
function.
Example. ((λx : Unit. x) ()) : Unit applies the
function (λx : Unit. x) : UnitUnit to the argument
() : Unit.

The expression (M1, M2) : A × B shows pairing
for expressions M1 : A and M2 : B. In other words,
for any two expressions M1 : A and M2 : B, we can
create a pair (M1, M2) : A×B. Conversely, fstM : A
and sndM : B correspond to the projections of the
expression M : A×B.
Example. (((), ()), ()) : (Unit × Unit) × Unit is a
pair made of ((), ()) : Unit × Unit and () : Unit.
fst(((), ()), ()) : Unit × Unit and snd(((), ()), ()) :
Unit are projections of the pair (((), ()), ()).

For the sake of extensibility, there may be other
type rules. Here are a little more non-elementary ex-
amples.
Example.

(λx : Unit. (x, x)) : (Unit×Unit)Unit

((λx : UnitUnit. (x ())) (λx : Unit. x)) : Unit

fst((λx : Unit. (x, x)) ((λx : Unit. x) ())) : Unit

Equations
Informally, equations give us rules which show

that two expressions represent the same value. To
give the rules properly, we must define two terms.
Definition 16 (Free and Bound Variables). For all
expression x, x is a free variable. The expression with
only the unit element () has no free variables. For the
expression λx : A.M , its free variables are those of
M , except x, which is bound. For other expressions,
its free variables are those of its subexpressions.

Definition 17 (Substitutable). Denote ϕ(x) as an
expression that may or may not have x as a free
varaible. An expression y is substitutible for x in
ϕ(x) if no free occurrences of y becomes bound in
ϕ(y).

Equations are relations of the form M1 =X M2,
where Mi are expressions and X is a set of variables
such that X ⊇ {x : x is free in M1 or M2}. These re-
lations are reflexive, symmetric, and transitive, and
they must satisfy these equation rules.

• If M : Unit, then M =X ()
e.g. ((λx : UnitUnit. (x ())) (λx : Unit. x)) =∅ ()

• If X ⊆ Y and M1 =X M2, then M1 =Y M2.
e.g. () ={x} ()

• If M1 =X M2, then f M1 =X f M2

• If M1 =X∪{x} M2, then λx : A. M1 =X λx : A. M2

• If a : A and b : B, then fst(a, b) =X a
and snd(a, b) =X b

• If c : A×B, then (fst c, snd c) =X c
• If f : AB , then λx : A. f x =X f if x /∈ X (so x is

not free in f)
e.g. (λx : Unit. ()) =∅ ()

• If x2 is substitutible for x1 in ϕ(x1) and x2 is
not free in ϕ(x1), then λx1 : A. ϕ(x1) =X λx2 :
A. ϕ(x2)

e.g. (λx : Unit. x) =∅ (λy : Unit. y)

Here are some non-elementary examples.
Example.

((λx : UnitUnit. (x ())) (λx : Unit. x)) =∅ ()

fst((λx : Unit. (x, x)) ((λx : Unit. x) ())) =∅ ()

(λx : Unit. (λy : Unit. y)) ={y} y

Now that we have fully defined what a typed λ
calculus is, we will go on to construct the equivalence
between typed λ calculi and Cartesian closed cate-
gories.

Construction of the Equivalence
Now that we’ve laid the groundwork of category

theory and programming language theory, we will
build the bridge between them. When we exam-
ine the definitions of typed λ calculus and Carte-
sian closed categories, we find many similarities. The
types in a typed λ calculus seems to have products
and exponentiation, and it is clear that Unit is the
analogue of the terminal object. So it is not a surprise
that there exists an equivalence between them. Here
are the general steps of constructing the equivalence.

1. Define the λCalc and Cart categories
(a) The objects of λCalc are typed λ calculi and

its morphisms structure preserving maps
(b) The objects of Cart are Cartesian closed cat-

7



egories with structure preserving functors as
morphisms

2. Define the equivalence between λCalc and Cart
(a) The functor C from λCalc to Cart maps

types to objects and equivalence classes of ex-
pressions with one free variable to morphisms

(b) The functor L from Cart to λCalc maps a
Cartesian closed category to its internal lan-
guage, the naturally constructed typed λ cal-
culus

(c) Finding that (C,L) is an equivalence by
showing that there are natural isomorphisms
η1 : C ◦ L⇒ 1λCalc and η2 : L ◦ C ⇒ 1Cart

In the rest of the section, we refer to these steps as
we construct this equivalence. Some of these parts
will be discussed briefly and further details can be
examined in the references included.

1a. The λCalc Category
It turns out that we can create a category of

typed λ calculi, denoted λCalc, where the objects
are typed λ calculi and its morphisms structure pre-
serving maps, called translations.
Definition 18 (Translation). Let L and L ′ be
typed λ calculi, and a : A in L . Φ : L → L ′ is
a translation if

• Φ sends types of L to types of L ′ and expressions
of L to expressions of L ′.

• a : A⇒ Φ(a) : Φ(A).
• Variable preserving : Variables are preserved.

– a has no free variables ⇒ Φ(a) has no free vari-
ables.

– Φ sends every ith variable of a to the ith variable
in Φ(a).

• Type operation preserving : Types are preserved.
– Φ(Unit) = Unit
– Φ(A×B) = Φ(A)× Φ(B)
– Φ(AB) = Φ(A)Φ(B)

• Expression preserving : Expression forming rules
are preserved, for example:
– Φ(fst(c)) = fst(Φ(c))
– Φ(λx : A. M) = λΦ(x) : Φ(A). Φ(M)

• Equation preserving : a =X b⇒ Φ(a) =Φ(X) Φ(b)

Given two translations Φ and Ψ, we denote Φ = Ψ
when Φ(a) =Φ(X) Ψ(b) whenever a =X b.

Proposition 7. λCalc is a category.

Proof. Given a typed λ calculus L , the identity mor-
phism would be the mapping from a type to itself
and an expression to itself. Since translations are
essentially functions, the usual composition operator
suffices as the composition operator for λCalc.

1b. The Cart Category
The objects of Cart are Cartesian closed cat-

egories with structure preserving functors as mor-
phisms, called Cartesian closed functors.
Definition 19 (Cartesian closed functors). A Carte-
sian closed functor F : C → D is a functor that
preserves products and exponentiation. In other
words, F (1) = 1 (recall 1 denotes a terminal object),
F (A×B) = F (A)× F (B), and F (AB) = F (A)F (B).

Cart is a subcategory of the category Cat, and
the identity morphisms and composition operators
are inherited from Cat. The fact that Cart is a
category follows from the definitions.

2a. From λCalc to Cart
Here we define a functor L : λCalc→ Cart that

maps types to objects and equivalenct expressions
with one free variable to morphisms.

In other words, given a typed λ calculus L , the
objects in the category obL(L ) are the types of L .
Moreover, given two types A,B ∈ T , the morphisms
between A and B are equivalence classes of expres-
sions of type B with one free variable of type A.

We define the equivalence relation as the follow-
ing. ϕ(x) and ψ(y) (refer to Equations for the nota-
tion) are equivalent if they are of the same type, x
and y are of the same type, x is substitutable for y
in ψ(y), and ϕ(x) ={x} ψ(x).

The reason we need this equivalence relation is to
fulfill one part of the definition for a category and
another one for Cartesian closed categories. Specifi-
cally, this equivalence relation ensures the uniqueness
of the identity morphisms. In other words, with the
equivalence relation, any two variables x and y of the
same type A correspond to the same morphism 1A.

The equivalence relation also ensures that Unit is
the terminal object by grouping together all expres-
sions with the free variable of type Unit equivalent.

It makes sense that C(L ) is a Cartesian closed
category. We are essentially converting types to ob-
jects and functions between the types to morphisms,
and the Cartesian closed structures in the types of L
are inherited over to C(L ).

We defer the details of the proof that C(L ) is
indeed a Cartesian closed category to [4].

2b. From Cart to λCalc
In the previous section, we were able to construct

a Cartesian closed category from a typed λ calculus
by seemingly forgetting some structure of the typed
λ calculus. For example, we have abstracted away
the expression forming rules and the equations into
the C functor’s definition.

8



So conversely, when we are constructing a typed
λ calculus from a Cartesian closed category, we must
insert the rules and equations using the structure we
have in Cartesian closed categories. The typed λ cal-
culus generated from a Cartesian closed category C
is called the internal language of C.
Definition 20 (Internal languages of Cartesian
closed categories). The internal langauge of a Carte-
sian closed category C is L(C) = (T, Expr, E) such
that T = ob C and the expression forming rules and
equation rules are satisfied.

We are using the definition of typed λ calculus in
order to satisfy our criteria for the equivalence. Barr
and Wells [2] use the same definition as us, and Scott
and Lambek [4] give us a more thorough definition
of the internal language of a category in general, and
it turns out that the definition above is equivalent in
the case of Cartesian closed categories.

2c. The Natural Isomorphisms
The natural isomorphisms come naturally by es-

sentially defining the output of the functor composi-
tion as the input. Here we give the mappings for ob-
jects and types and defer the mappings for morphisms
and expressions to [4], since they require background
information on functional completeness, a topic not
covered in this paper.

To define the natural isomorphism η : C ◦ L ⇒
1Cart, for each Cartesian closed category C we must
find an isomorphism ηC : C → C ◦ L(C). We no-
tice that an object A of C ◦ L(C) is essentially a
type of L(C), which is an object of C, so we define
ηC(A) = A for all A ∈ ob C. As said before, we defer
the mappings for Mor C to [4].

Likewise, to define the other natural isomorphism
ε : 1λCalc ⇒ L ◦ C, for each typed λ calculus
L = (T,Expr, E), we must find an isomorphism
εL : L ◦ C(L ) → L . We notice that a type A
of L◦C(L ) is the object of C(L ), which is a type of
L , so we define εL (A) = A for all A ∈ T . Similarly,
we defer the mappings for Expr to [4].

The proofs that the two mappings above are in-
deed natural isomorphisms are not covered in this
paper and are given in [4].

Consequences
The equivalence of typed λ calculi and Cartesian

closed categories is significant in that it gives us the
isomorphisms below.

L(C(L )) ∼= L and C(L(C)) ∼= C
This means that in general we can apply any knowl-
edge we know about Cartesian closed categories to
typed λ calculi and vice versa. For example, we

can apply the entire structure of category theory and
the power of commutative diagrams to the theory of
typed λ calculi.

Also, since Cartesian closed categories have no
variables, we will no longer have to worry about vari-
able names clashing if we use Cartesian closed cate-
gories as a way of expressing typed λ calculi [2, 4].

Conclusion
In this paper we built a single bridge. A bridge

that is unlike any other bridge because it doesn’t
have a physical form in this world and doesn’t con-
nect any two material objects. We built an ab-
stract bridge that connects two large academic fields
of study, mathematics and computer science. More
specifically, we built an equivalence between Carte-
sian closed categories from category theory and typed
λ calculi from programming language theory.

And we’ve come a long way to build this bridge.
We first laid out the groundwork in category theory
and Cartesian closed categories, to solidify the plat-
form for one side of the bridge. We hardened the plat-
form by drawing inspiration from set theory to de-
fine terminal objects from singletons, products from
Cartesian products, and exponentiation from func-
tion sets.

Next, we defined the equivalence between cate-
gories as the blueprint of the bridge. We defined
functors as morphisms between categories and natu-
ral isomorphisms as an equivalence between functors
as components of this blueprint.

We then defined typed λ calculi, the abstract pro-
gramming language, as the other platform for the
bridge. The language comprised of types which were
attributes, expressions which were building blocks for
the program, and equations which gave equality be-
tween expressions.

Finally, we assembled the bridge by constructing
the equivalence between typed λ calculi and Carte-
sian closed categories. We first defined the cate-
gory of typed λ calculi where the morphisms were
translations between two languages, then the cate-
gory of Cartesian closed categories where the mor-
phisms were Cartesian closed functors. We then con-
structed the equivalence between the two categories
by defining functors between them and the natural
isomorphisms between the two functors.

When we’re asked about the applications of math-
ematics in computer science, in addition to Turing
machines in complexity theory and statistics in ma-
chine learning, we can give the relationship between a

9



foundational mathematical framework and program-
ming language theory. We can say with confidence
that typed functional programming languages are
equivalent to Cartesian closed categories and because
of that, notions from category theory can be directly
applied to the languages. In theoretical fields, there
are often bridges between two seemingly disconnected
topics, and the equivalence of typed λ calculi and
Cartesian closed categories is an example of such a
beautiful bridge.

Acknowledgements
The construction of this equivalence was pio-

neered by Joachim Lambek, who was a professor at
McGill University. His 1980 work is one of the first
that focused on this idea and his paper from 1985
gives an accessible introduction [5, 6]. Most of the
works here on typed λ calculi and the equivalence
were adapted from the book Introduction to Higher
Order Categorical Logic by P.J. Scott and Joachim
Lambek [4].

We also thank Benjamin Pierce, professor of com-
puter science at the University of Pennsylvania, for
providing us with an accessible introduction to cat-
egory theory in his book Basic Category Theory for
Computer Scientists [11].

References
[1] A. Asperti and G. Longo. Categories, Types, and

Structures: An Introduction to Category Theory
for the Working Computer Scientist. MIT Press,
Cambridge, MA, USA, 1991.

[2] M. Barr and C. Wells. Category Theory for Com-
puting Science. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1990.

[3] G. Huet. Cartesian closed categories and
lambda-calculus. In G. Cousineau, P.-L. Curien,
and B. Robinet, editors, Combinators and Func-
tional Programming Languages, pages 123–135,
Berlin, Heidelberg, 1986. Springer Berlin Heidel-
berg.

[4] P. J. S. J. Lambek. Introduction to Higher-
Order Categorical Logic. Cambridge Studies in
Advanced Mathematics. Cambridge University
Press, 1988.

[5] J. Lambek. From lambda calculus to cartesian
closed categories. In To H.B.Curry : essays on
combinatory logic, lambda calculus, and formal-
ism, 1980.

[6] J. Lambek. Cartesian closed categories and
typed λ-calculi. In Proceedings of the Thirteenth
Spring School of the LITP on Combinators and
Functional Programming Languages, pages 136–
175, London, UK, UK, 1986. Springer-Verlag.

[7] J.-P. Marquis. Category theory. In E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University,
fall 2019 edition, 2019.

[8] A. Martini and A. Martini. Category theory and
the simply-typed lambda-calculus, 1996.

[9] B. Milewski. Category Theory for Programmers.
Blurb, Incorporated, 2018.

[10] nLab authors. internal logic. http://ncatlab.

org/nlab/show/internal%20logic, Dec. 2019.
Revision 63.

[11] B. C. Pierce. Basic Category Theory for Com-
puter Scientists. MIT Press, Cambridge, MA,
USA, 1991.

[12] A. Pitts. Brief notes on the category theoretic
semantics of simply typed lambda calculus.

[13] E. Riehl. Category Theory in Context. Aurora:
Dover Modern Math Originals. Dover Publica-
tions, 2017.

10

http://ncatlab.org/nlab/show/internal%20logic
http://ncatlab.org/nlab/show/internal%20logic
http://ncatlab.org/nlab/revision/internal%20logic/63

	Introduction
	Basic Category Theory
	Categories
	Diagrams
	Morphisms
	Terminal Objects
	Products
	Exponential objects
	Cartesian Closed Categories

	Equivalence of Categories
	Functors
	Natural Isomorphisms
	Equivalence of Categories

	Typed Lr Calculus
	Types
	Expressions
	Equations

	Construction of the Equivalence
	1a. The lCalc Category
	1b. The Cart Category
	2a. From lCalc to Cart
	2b. From Cart to lCalc
	2c. The Natural Isomorphisms
	Consequences

	Conclusion
	Acknowledgements


